Model NO.: MGP-230SCDP
Structure: According to Client′s Technical Specification
We Can Design by Pls & Tower Software: According to Client Desing or Requirement
Trademark: MEGATRO
Transport Package: Export Standard Package
Specification: AS PER CLIENT
Origin: Shandong, China
HS Code: 73082000
Model NO.: MGP-230SCDP
Structure: According to Client′s Technical Specification
We Can Design by Pls & Tower Software: According to Client Desing or Requirement
Trademark: MEGATRO
Transport Package: Export Standard Package
Specification: AS PER CLIENT
Origin: Shandong, China
HS Code: 73082000
MEGATRO 230KV single circuit davit cross-arm transmission poleOur company, QINGDAO MEGATRO HOLDING, CO., LIMITED, is a full service engineering and manufacturing company with a global reputation for delivering excellence and innovation in tower supply. We have over 10 years of experience and innovation in engineering, designing, and building towers.
Â
We design all kinds of towers and posts for:
a.     Telecoms
b.     Power transmission
c.     TV and Radio Broadcast
d.     Roads and City Development
e.     Wind energy solutions
Â
Our complete selection of towers includes:
a.     Self-supporting
b.     Monopoles
c.     Guyed towers
d.     Custom-designed radar towers
e.     Broadcast towers
f.       Power transmission
Â
MEGATRO also designs and manufactures tower related products including:
a.     Fall protection
b.     Antenna brackets
c.     Other Accessories if needed by clients
This photo refers to our 230KV single circuit davit cross-arm transmission pole,
This type pole no need cross-arm, and has string on pole body, insulator install on pole body with string form to davit cross-arm type. Their technical specification as follow:
1 | Line details - Circuit ( SC ) & KV. | SC, 230 KV |
2 | Number of phases. | 3 |
3 | Tower details | Suspension pole |
4 | Nominal Span | 200 |
5 | Wind span | 220m |
 | Weight span | 300m |
6 | Conductors Type ( ACSR/AAAC/etc) | ACSR ZEBRA |
 | Conductor - Single/twin/quad/hexa | SINGLE |
7 | Earthwire | 7/3.66 mm Galvanised steel Earth wire |
8 | Insulators. | 230 KV LONG ROD POLYMERIC |
9 | Wind Speed | 260 kM/Hr |
10 | Factor of safety. | 1 |
11 | Environmental condition of area (Temp). | Design Ambient Temperature 45 DegC |
12 | Tower Height. | 20-40 Mtr. (Subject to approval ) |
a | Connecting existing line, if any | Â |
b | New / Proposed line | New |
13 | Design Code | ASCE Manual No -72 |
Â
Our MEGATRO provide and design this type 230KV single circuit davit cross-arm transmission pole, and mainly serve for our overseas client. Since 2004, MEGATRO focus mainly international market and had export many kind of transmission structures to overseas clients. MEGATRO has been manufacturing lattice transmission tower & tapered steel poles for lighting, traffic control, communication and utility applications. MEGATRO pioneered the development of transmission tower, telecom tower, substation, and other steel structure and was also at the forefront in the design of Transmission tower. Our 230KV single circuit davit cross-arm transmission pole can be manufactured as one large piece, or as several small pieces which fit together. This type of pole often used in city power transmission grid, with little space, economic and lower cost. Now MEGATRO can produce distribution pole with some type as follow:
Â
(1) Flange connection
(2) Slip joint
(3) Step type
(4) Stagger type
(5) Others
Today, with over 10 years of experience and our commitment to excellence, MEGATRO remains an industry leader in the manufacture and design of steel tubular & angular & monopole structures for all Highway, Municipal, Custom, telecom, lighting and electric Utility applications. MEGATRO has a complete staff of professional engineering personnel trained in the PLS Pole program and three different manufacturing processes for producing steel towers, poles and other supports. We utilize the latest versions of PLS-CADD, PLS-POLE, TOWER, AutoCAD and other CAD software.
Â
The structure shall be designed according to load combinations given as per IEC 61936-1 and as illustrated below:
Normal loads
1 Dead weight load
2 Tension load
3 Erection load
4 wind load
Â
Exceptional loads
1 Switching forces
2 short-circuit forces
3 Loss of conductor tension
4 Earthquake forces
 MEGATRO is fully equipped and qualified to carry out Design Engineering services which includes:
√ Overhead Transmission line steel tower & Telecom steel tower
  Basic Design and Analysis
√ Shop Erection Drawings
√ As-Built Drawings
Â
MEGATRO performs in-house design activities specializing in electrical overhead transmission &telecom tower steel works, which include wind and earthquake loading, static analysis, stress analysis by finite element methods and fatigue.
Â
Our Engineering Department is boasting of highly qualified engineering who are conversant with international codes and standards. The work is carried out with extensive use of CAE/CAD via a large of computer network. The computer hardware & drafting software are liked to the CNC workshop equipment for downloading of information thereby eliminating error and saving valuable production time.
MEGATRO is one of the few manufactures who assemble a face of 35KV four circuit terminal towers. This attention to quality may not be the cheapest process but it does insure every tower meets our high standards of quality. And it helps to reduce on-site construction cost due to mismatched assemblies. After fabrication all 230KV single circuit davit cross-arm transmission poles are delivered to the galvanizing facility to be Hot DIP Galvanized. Towers are processed through the facility by Caustic Cleaning, Pickling, and then Fluxing. These strict procedures insure years of maintenance free towers. MEGATRO' 230KV single circuit davit cross-arm transmission poles systems can accommodate a variety of cross-arm. MEGATRO also offers a wide variety of accessories and mounts. Â Â
Â
Other information:
Availability size: Based on the customer's requirements.
Material: Chinese material or as per clients requirement
Package: Both parties discuss before delivery
Port of Loading: Qingdao Port
Lead Time: One month or based on the customer's needs
Minimum order: 1 set
Fabrication standard: Chinese Standard or other standard which client accepted
Steel grades
Tower legs: Chinese steel Q345, which equivalent to ASTM A572 GR50
Other webs, bracing and not stress plate and angle steel: Chinese Q235B, which equivalent to ASTM A36
Plates: Chinese steel Q345B, which equivalent to ASTM A572 GR50Â
Bolts: Chinese grade 6.8 and 8.8, which equivalent to ASTM A394 type 0 or ISO 898/6.8Â
A) Dimension and tolerance for angle are according to GB/T1591-1994, similar to EN 10056-1/2
B) Hot dip galvanization in accordance with GB/T 13912-2002, which equivalent to ASTM A 123
C) The welding will be performance in accordance with Chinese standard, which equivalent to AWS D1.1 or CWB standard
General Fabrication Requirements
Here is general fabrication requirements for our transmission tower; however, both parties must discuss all drawings and confirm all shop drawings, technical specification, and which standard to conform.Â
Before mass production, we must received all signed approved shop drawings and technical documents from our client.Â
Â
Our Fabrication shall be in strict accordance with detail Drawings prepared by the Contractor and approved by the Engineer. Fabrication shall begin after the approval of the shop assembly and tests.
     Â
Shearing
     Â
Shearing and cutting shall be performed carefully and all portions of the work which will be exposed to view after completion shall be finished neatly. Manually guided cutting torches shall not be used.
Â
All material over 13 (or 12) mm thick shall be cold sawn or machine flame cut.
Â
Cropping or shearing shall be allowed for material thickness of 13 mm or less.
Â
Flame cutting of high yield steel shall be preceded by a slight preheat operation by passing the cutting flame over the part to be cut.
Â
All flame-cut edges shall be ground clean.Â
     Â
Bending
Â
Bending shall be carried out in such a manner as to avoid indentation and surface damage. All bending over 5o, or high yield steel, shall be performed while the material is hot.
Â
WeldingÂ
Â
No welding shall be done unless prior approval has been obtained from the Engineer.
Welding shall not be allowed at tower attachment points for conductor, shieldwire, insulators or associated assemblies or brackets.
Â
Sub-punching
Â
All holes in structural steel less than 10 mm thickness may be punched to full size unless otherwise noted on the approved Drawings. Holes shown on the Drawings as drilled holes and all holes in structural steel 10 mm or more in thickness and tension members of crossarms shall be drilled or sub-punched and reamed.
Â
All holes shall be clean cut and without torn or ragged edges. All burrs resulting from reaming or drilling shall be removed. All holes shall be cylindrical and perpendicular to the member.
Â
Where necessary to avoid distortion of the holes, holes close to the points of bends shall be made after bending.
Â
Punching
Â
For punching to full size, the diameter of the punch shall be 1.0 mm larger than the nominal diameter of the bolt, and the diameter of the die shall not be more than 1.5mm larger than the diameter of the punch. For sub-punching, the diameter of the punch shall be 4 mm smaller than the nominal diameter of the bolt, and the diameter of the die shall be not more than 2 mm larger than the diameter of the punch. Sub-punching for reamed work shall be such that after reaming no punch surface shall appear in the periphery of the hole.
Â
Hole Size
Â
Where holes are reamed or drilled, the diameter of the finished hole shall be not greater than the nominal diameter of the bolt plus 1.0 mm.
Â
Â
Accuracy
Â
All holes shall be spaced accurately in accordance with the Drawings and shall be located on the gauge lines.
Â
The maximum allowable variation in hole spacing from that indicated on the Drawings for all bolt holes shall be 0.8 mm.
Â
Fabrication Tolerances
Â
A specification for tolerances shall be submitted for approval by the Engineer prior to commencement of fabrication.
Â
Bolt List
Â
A complete list of bolts showing their lengths and the members, which they are to connect shall be given on the erection diagrams.
Â
Locking Devices
Â
Locking devices for tower bolts will not be required, but point punching shall be performed.
Â
Anti-theft Fasteners
     Â
Appropriate anti-theft fasteners for example Huck-bolting shall be applied on all the towers up to the level of anti-climbing devices, to prevent theft of tower members.
Piece Marks
Â
All pieces shall be stamped before galvanizing with the piece marks shown on the erection Drawings, with the marking not less than 20 mm high placed in the same relative location on all pieces. The marking shall be plainly visible after galvanizing.
Â
Galvanizing
Â
All material shall be hot-dip galvanized after fabrication in accordance with the latest revision of GB/T 13912-2002 or ASTM Specification A 123.
Â
Material that has been rejected because of bare spots or other coating defects shall either be stripped and re-galvanized, or the uncoated areas shall be recoated by an approved method.
Â
All plates and shapes which have been warped by the galvanizing process shall be straightened by being re-rolled or pressed. The material shall not be hammered or otherwise straightened in a manner that will injure the protective coating.
Â
Approval shall be secured from the Engineer if galvanizing is done outside of the Contractor's plant.
Â
All galvanized steelwork shall be protected against white storage stain by using an approved dichromate solution treatment immediately following galvanizing.
Â
Â
APPLICABLE STANDARD AND CODES
All towers manufactured and design shall be generally in accordance with latest revision of the following standards except where specifically directed otherwise.Â
GeneralÂ
IEC 60826Â Â Â -Â Design criteria of overhead lines
IEC 60652Â Â Â -Â Loading tests on overhead line structures
ISO 1459Â Â Â -Â Metallic coatings - Protection against corrosion by Hot Dip Galvanizing
ISO 1461Â Â Â -Â Hot dip galvanized coatings on fabricated iron and steel articles
ISO 12944Â Â Â -Â Paint coatings, corrosion protection, and structural steelwork
ISO 898-1Â Â Â -Â Mechanical properties of fasteners. Part 1-Bolts, Screws and studs
ISO 630Â Â Â -Â Structural Steels - plates, wide flats, bars, sections and profiles
ISO 657Â Â Â -Â Hot rolled structural steel plates tolerances on dimensions and shape
ISO 7411Â Â Â -Â Hexagon Bolts for high strength structural bolting with large width across flats
ISO 657-5Â Â Â -Â Hot rolled Structural Steel Sections equal and unequal leg angles
ISO 7452Â Â Â -Â Hot rolled structural steel plates tolerances on dimensions and shape
BS EN 50341-1Â - Overhead electrical lines exceeding AC 45kV -General Requirements
BS 8004Â Â Â -Â Code of Practice for Foundations
BS 8110Â Â Â -Â Structural use of concrete
ANSI10-97Â Â Â - Design of latticed steel transmission structures
IEC 60050 (151)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â International Electro-technical VocabularyÂ
                                      Part 51 Electrical and Magnetic Devices
IEC 60050 (601)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Chapter 601: Generation, transmission and distribution of electricity-GeneralÂ
IEC 60050 (601)Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Chapter 601: Generation, transmission and distribution of electricity-Operation
IEC 60059Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â IEC standard current ratingsÂ
Chinese Standard
No | Code | DESCRIPTION |
1 | GB/T2694-2003 | Power Transmission line Steel tower - Technical requirements for manufacturing |
2 | JGJ81-2002 | Technical specification for welding for steel structure of building |
3 | GB9787-88 | Measuring and allowable tolerance for hot-rolled equal angle |
4 | GB709-88 | Measuring and allowable tolerance for hot-rolled plate and strip |
5 | GB/T699-1999 | Quality Carbon Structural Steel |
6 | GB/T1591-1994 | Low alloy high strength structural Steel |
7 | GB700-88 | Carbon Structural Steel |
8 | GB222-84 | Method of sampling steel for determination of chemical composition and permissible variations |
9 | GB/T228-2002 | Method for Tensile testing of metals |
10 | GB/T232-1999 | Method for Bending test of metals |
11 | GB/T5117-1995 | Carbon Welding Rod |
12 | GB/T5118-1995 | Low Alloy Welding Rod |
13 | GB/T8110-1995 | Welding wires for gas shielding arc welding of carbon and low alloy steels |
14 | GB/T10045-2001 | Carbon steel flux cored electrodes for arc welding |
15 | JB/T7949-1999 | Weld outer dimensions for steel construction |
16 | GB50205-2001 | Test Standard for Acceptance of Steel Structure |
17 | GB/T470-1997 | Zinc Ingot |
18 | GB3098.1-2000 | Mechanical properties of fasteners-Part 1:Bolts, screws and studs |
19 | GB3098.2-2000 | Mechanical properties of fasteners-Part2: Nuts, and thread |
20 | GB3098.3-2000 | Mechanical properties of fasteners-Part3: Fastening screw |
21 | GB/T5780-2000 | Helical Bolts Grade C |
22 | GB/T41-2000 | Helical Nuts Grade C |
23 | GB/T90-2002 | Flat Washer Grade C |
24 | GB/T13912-2002 | Metal Coating, Technical Requirement and Test Method for Hot-dip galvanized Metal Parts |
Â
American Standards:
Standard | Description |
ASTM A6/A6M | Standard specification for general requirements for rolled structural steel bars, plates, and sheet piling. |
ASTM - 6   | - General Requirements for delivery of Rolled Steel Plates, Shapes, sheet Piling Bars for structural used |
ASTM A36/A36-M-97a | Standard specification for Carbon structural steel |
ASTM A123Â / A123M-02 | Standard specification for Zinc (Hot-Dip Galvanized) Coatings on iron and steel products |
ASTM A143 / A143M-03 | Standard Practise for Safeguarding Against Embitterment of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embitterment |
ASTM A153/ A153M-05 | Standard specification for zinc coating (Hot-Dip) on iron and steel hardware |
ASTM A - 194Â | -Â Â Grade for bolt |
ASTM A239 | Standard practice for locating the thinnest spot in a zinc (Galvanized) Coating on Iron or Steel Articles |
ASTM A242 | Standard specification for High-Strength Low-Alloy Structural steel |
ASTM A307 | Standard Specification for Carbon Steel Bolts and Studs, 60000 PSI Tensile strength |
ASTM A370-06 | Standard Test Methods and Definitions for Mechanical Testing of Steel Products |
ASTM A325 | Standard Specification for structural bolts, steel, Heat treated 120/105 ksi minimum tensile strength |
ASTM A-325 or A-354 | - Galvanized hexagonal head of connection bolt |
ASTM A325-97 | Standard Specification for High-strength Bolts for structural steel Joints |
ASTM A384 / A384M-02 | Standard Practise for Safeguarding Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies. |
ASTM A394-93 | Standard Specification for steel Transmission Tower, Bolts, Zinc Coated and Bare |
ASTMA - 563 | -Â Â Â Class and size of nuts |
ASTMA - 572Â Â | - Chemical composition of steel |
ASTM A572/A572-97c | Standard specification for High-Strength Low-Alloy Columbium-Vanadium Structural steel |
 ASTMA - 615 | -  The anchor bolt material |
ASTM A673 / A673M-07 | Standard Specification for Sampling Procedure for Impact Testing of Structural Steel |
ASTM B201 | Standard practice for testing Chromatic coating on Zinc and Cadmium surfaces |
ASTMÂ E94-93 | Standard Guide for Radiographic Testing |
ASTM E 709-95 | Standard Guide for Magnetic Particle Examination |
ASCE Manual 72Â Â Â | -Â Load testing a simple structure |
ASCE 10-97 | Standard Design of latticed steel transmission structures |
AWS D1.1 | American Welding Society D1,1/D1,1M structural Welding code- Steel |
ANSI B-182-2 | Bolts, nuts and washers dimensions |
DIN VDE 0101Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â -Â Isokeraunic Level
VDE 0201                             - Climatic and environmental  conditions
CVDE 0210                          - Minimum safety factors under   simultaneous working loads
ISO R898 Mechanical Properties of FastenersÂ
BS EN ISO 1461:1991 - High dip galvanized coatings on fabricated iron and steel articles. Specifications and standards
A) BS 5950: Welding Terms And Symbols
B) BS 729: Hot - Dip Galvanised Coating On Iron And Steel Articles
C) BS 2901: Filler Rods And Wires For Gas Shielded Arc Welding: Part 1 Ferritic Steels
D) BS 3692: ISO Metric Precision Hexagon Bolts, Screws And Nuts
E) BS 4360: Weldable Structural Steel
F ) BS 5135: Metal - Arc Welding Of Carbon And Carbon Manganese Steel
G) BS 5950: Part 1: Code Of Practice For Loading Latticed Tower & Masts
Part 2: Guide To The Background And Use Of Part 1"Code OF Practice For Loading"
Part 3: Strength Assessment of Members
H) DD 133 (1986): Code Of Practice For Loading Latticed Tower & Masts
I) BS 4592 (1987): Part 2: Specification For Expanded Metal Grating Panels
J) BS 4592 (1977): Code Of Practice For Protective Coating Of Iron And Steel Structure Against Corrosion
K) BS 4190: Bracing & Flanged Bolts
L) BS 4190: Rolled Steel sections, Flats & Plates
Â
If any special requirement, we can design and discuss with client.Â
Â
Â
 MEGATRO 230KV single circuit davit cross-arm transmission pole
Our company, QINGDAO MEGATRO HOLDING, CO., LIMITED, is a full service engineering and manufacturing company with a global reputation for delivering excellence and innovation in tower supply. We have over 10 years of experience and innovation in engineering, designing, and building towers.
Â
We design all kinds of towers and posts for:
a.     Telecoms
b.     Power transmission
c.     TV and Radio Broadcast
d.     Roads and City Development
e.     Wind energy solutions
Â
Our complete selection of towers includes:
a.     Self-supporting
b.     Monopoles
c.     Guyed towers
d.     Custom-designed radar towers
e.     Broadcast towers
f.       Power transmission
Â
MEGATRO also designs and manufactures tower related products including:
a.     Fall protection
b.     Antenna brackets
c.     Other accessories if needed by clients
This photo refers to our 230KV single circuit davit cross-arm transmission pole,
This type pole no need cross-arm, and has string on pole body, insulator install on pole body with string form to davit cross-arm type. Their technical specification as follow:
1 | Line details - Circuit ( SC ) & KV. | SC, 230 KV |
2 | Number of phases. | 3 |
3 | Tower details | Suspension pole |
4 | Nominal Span | 200 |
5 | Wind span | 220m |
 | Weight span | 300m |
6 | Conductors Type ( ACSR/AAAC/etc) | ACSR ZEBRA |
 | Conductor - Single/twin/quad/hexa | SINGLE |
7 | Earthwire | 7/3.66 mm Galvanised steel Earth wire |
8 | Insulators. | 230 KV LONG ROD POLYMERIC |
9 | Wind Speed | 260 kM/Hr |
10 | Factor of safety. | 1 Wifi Repeater,Power Amplifier,3G Repeater Fuzhixing Electronics Co., Ltd. , http://www.gdsignalbooster.com |